Ayasdi: Using Topological Data Analysis to Understand Behavior of Convolutional Neural Networks

TLDR: Neural Networks are powerful but complex and opaque tools. Using Topological Data Analysis, we can describe the functioning and learning of a convolutional neural network in a compact and understandable way. The implications of the findings are profound and will accelerate the development of a wide range of applications from self-driving cars and drones to complying with things like GDPR.

Introduction
Neural networks have demonstrated a great deal of success in the study of various

Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.

To access these options, along with all other subscription benefits, please contact [email protected] or view our subscription options here: http://subscriptions.risk.net/subscribe

You are currently unable to copy this content. Please contact [email protected] to find out more.

To continue reading...

You need to sign in to use this feature. If you don’t have a RiskTech Forum account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here: